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Abstract
Planar bilayer lipid membranes (BLMs) are currently employed to construct
many bio-inspired material systems and structures. In order to characterize
the pressure effects on the equilibrium configurations of these biological
membranes, a novel continuum model is proposed. The BLM is assumed to be
a two-layer smectic A liquid crystal. The mean orientation of the amphiphilic
molecules comprising the membrane is postulated to be perpendicular to the
layers and each layer is idealized as a two-dimensional liquid. Moreover, the
BLM is modeled as a simply supported plate undergoing small deformations.
It is subjected to a pressure load that acts perpendicularly to the layers. The
equilibrium equations and boundary conditions are derived from the bulk elastic
energy for smectic A liquid crystals as described by de Gennes and Prost (1993
The Physics of Liquid Crystals 2nd edn (Oxford Science Publications)) by
using variational methods. The resulting fourth-order linear partial differential
equation is solved by employing cylindrical functions and the series solution
is proved to be convergent. The solution is numerically computed for values
of the model parameters that are reported in the literature.

PACS number: 61.30.Cz

1. Introduction

Bilayer lipid membranes constitute the dominant component of cellular membranes. They
help in confining the interior of cells, enclosing their organelles, and mediating the transport
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of molecules into and out of cells and organelles. Their buildings blocks are amphiphilic
molecules. These molecules are characterized by having hydrophilic head groups and
hydrophobic tails. Therefore, when a specific concentration of lipid molecules is dissolved
in an aqueous medium, planar bilayer lipid membranes (BLMs) are generated in which
the hydrophilic heads become exposed to the watery solution whereas the hydrophilic tails
constitute the core of the membranes (Alberts et al 2002).

Interest in research on BLMs is growing not only because they are the perfect model for
studying the cellular membranes but also because they continue to demonstrate their potential
use in numerous applications ranging from drug delivery systems (Raviv et al 2005, Fang et al
2006) to biosensors for detecting biological agents (Sackmann 1996, Cremer and Yang 1999).
The BLMs together with sucrose transporters are being employed by the authors to engineer a
micro-hydraulic actuator that uses the transport phenomenon occurring at the cellular level to
convert biochemical energy into mechanical energy (Sundaresan and Leo 2005). The actual
use of BLMs is, however, hampered by their poor stability to environmental disturbances such
as, for example, air exposure, contamination, temperature changes, and mechanical stresses.

In order to improve the mechanical performance of bio-material systems and structures
which incorporate BLMs, a rigorous investigation of their resistance to various pressure loads is
needed. Toward this end, experiments are being conducted by the authors in which the BLMs
are reconstituted over porous membranes and, subsequently, pressurized (Hopkinson et al
2006, Hopkinson and Leo 2007). Because performing experiments on BLMs is challenging
due to the small stresses and deformations involved, the formulation of reliable mathematical
models becomes important for designing the experiments and interpreting their results.

Continuum models, which are used to synthesize the experimental findings obtained
by using atomic force microscope and micropipette aspiration techniques, are based on the
simplifying assumption that the BLMs behave either as solids or fluids. These models include
linear elastic and viscoelastic solid models—Newtonian, Maxwell and shear thinning liquid
drop models. However, BLMs have been universally recognized to be smectic A liquid crystals
(Collings and Hird 1997).

Liquid crystals are mesomorphic states of matter that possess properties that are
intermediate between those of crystalline solids and amorphous liquids. In crystalline solids,
the molecules are fixed over a lattice with their axes oriented in specific directions whereas,
in amorphous liquids, the molecules move randomly in the container they occupy. In liquid
crystals, the molecules are free to move although they preserve orientational order. The word
smectic comes from the Greek word that means ‘soap-like’. As in soaps, the molecules in
smectic liquid crystals form layered structures with defined interlayer spacing exhibiting both
orientational and positional order. Specifically, the molecular axes in smectic A liquid crystals
are normal to the layers. Layer undulations in smectic A have been considered in a variational
formulation for rectangular and cylindrical domains (Stewart 1998, Stewart 1999). A short
review of smectic layer undulations obtained via the classical Helfrich–Hurault effect may be
found in de Gennes and Prost (1993) and Stewart (2004).

When conducting the experiments (Tien 1968, Wobschall 1971, Hopkinson et al 2006),
the BLMs are reconstituted over solid substrates that possess cylindrical pores. Consequently,
they are subjected to hydrostatic pressure perpendicularly to these substrates. To emulate the
mechanical behavior of BLMs during these experiments, in the present study the BLMs that
occupy the pores of the substrates are modeled as simply supported plates under normal
pressure. The BLMs are assumed to be smectic A liquid crystals. The governing equilibrium
equations and boundary conditions are derived by using variational methods and the well-
known elastic energy discussed by de Gennes and Prost (1993). The series solution is
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Figure 1. BLM subjected to a uniform constant pressure.

expressed in term of cylindrical functions and proved to be convergent. The deformation of
BLMs is illustrated for values of the parameters that are found in the literature.

2. Model formulation

Consider a circular BLM with simply supported edges subjected to a normal pressure (see
figure 1). Hereafter, the boundary value problem for the BLM is derived within the theoretical
framework for smectic A liquid crystals set forth in de Gennes and Prost (1993) by using
variational methods. The resulting linear fourth-order partial differential equation is solved
under simplifying assumption on the form of the deflection. By applying the cylindrical
functions and their properties, a convergent series solution (given by equation (61) below)
is obtained. Finally, the deflection of the BLM is plotted for the values of the parameters
reported in the literature.

2.1. Equilibrium equations and boundary conditions

Consider the Cartesian coordinate system with orthonormal basis {e1, e2, e3} as shown in
figure 1. Let R denote the volume region occupied by the BLM. Moreover, let ∂R =
∂Ru ∪ ∂Rt1 ∪ ∂Rt2 be its boundary (see figure 1). Let n be a unit vector, called the director,
which denotes the average alignment of lipid molecules. In a first-order approximation, the
vector n has components (de Gennes and Prost 1993)

n =
(

− ∂u

∂x1
,− ∂u

∂x2
, 1

)
,

∣∣∣∣ ∂u

∂x1

∣∣∣∣,
∣∣∣∣ ∂u

∂x2

∣∣∣∣ � 1, (1)

where u = u(x1, x2, x3) denotes the layer vertical displacement. If the BLM is assumed not to
bend very much from the x1 − x2 plane and not to strongly compress, the bulk elastic energy
density has been shown to have the following form (de Gennes and Prost 1993, p 343)

E = B

2

(
∂u

∂x3

)2

+
K1

2

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)2

+ 2K1

[(
∂2u

∂x1∂x2

)2

− ∂2u

∂x2
1

∂2u

∂x2
2

]
, (2)

where B and K1 are two (positive) constants that have energy length−3 and energy length−1

dimensions, respectively, and define the static properties of smectic A liquid crystals. The
constant B is the smectic layer compression constant and K1 is the usual Frank splay elastic
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constant. In equation (2) above, the usual K24 saddle-splay elastic constant has been set equal
to 2K1: this approximation is in accordance with the a priori Ericksen inequalities for the
elastic constants (see (Stewart 2004, p 22), noting that K24 is equivalent to K2 + K4). The
length λ = (K1/B)

1
2 has been found to be comparable to the layer thickness (de Gennes and

Prost 1993). In particular, the first term in equation (2) is the compressive-dilatational energy
of the layers whereas the other terms account for the saddle-splay energy (de Gennes and Prost
1993). The form of energy density in (2) is also related to the elastic energy density for plates
(Landau and Lifshitz 1986, p 39).

The total potential energy that results from the sum of the bulk elastic energy (2) and the
pressure, P = P(r), acting normal to the BLM as shown in figure 1, is

F =
∫
R

{
B

2

(
∂u

∂x3

)2

+
K1

2

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)2

+ 2K1

[(
∂2u

∂x1∂x2

)2

− ∂2u

∂x2
1

∂2u

∂x2
2

] }
dV (3)

+
∫

∂Rt2

Pu dA, (4)

with the boundary conditions

u = 0 on ∂Ru, (5)

t = 0 on ∂Rt1 , (6)

t = −P e3 on ∂Rt2 , (7)

where u = −u(x1, x2, x3)e3 denotes the displacement vector and t denotes the traction vector.
It needs to be emphasized that no torque is applied on the lateral surface of the BLM.

In order to derive both the equilibrium equations and the boundary conditions, functional
(3) is minimized by using variational methods. Because of the geometrical symmetry of the
BLM, cylindrical coordinates, (r, θ, z), are used to simplify the treatment of the problem.
Then, the region R can be expressed as

R = {(r, θ, z) : 0 � r � b, 0 � θ � 2π, 0 � z � h}, (8)

where b and h are the radius and thickness of the BLM, respectively. Moreover, let û(r, θ, z)

denote the layer vertical displacement in cylindrical coordinates. It readily follows that
functional (3) can be re-written as

F̂ =
∫ 2π

0

∫ h

0

∫ b

0

{
B

2
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∂z

)2

+ K1
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∂2û

∂θ2
+

1

r3

∂û

∂r

∂2û

∂θ2
+

1
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(
∂2û

∂θ2

)2

− 1

r

∂2û

∂r2

∂û

∂r

+
1

2

(
∂2û

∂r2

)2

+
1

2r2

(
∂û

∂r

)2

− 4

r3

∂2û

∂r∂θ

∂û

∂θ
+

2

r2

(
∂2û

∂r∂θ

)2

+
2

r4

(
∂û

∂θ

)2
]}

r dr dz dθ

+
∫ 2π

0

∫ b

0
P ûr dr dθ. (9)

Due to the symmetry of the BLM volume region, the layer vertical displacement can be
assumed to be independent of θ , i.e. û = û(r, z). Under this assumption, functional (9) takes
the simplified form

F̂ =
∫ 2π

0

∫ h

0

∫ b

0

[
B

2
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∂û
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(
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r dr dz dθ

+
∫ 2π

0

∫ b

0
P ûr dr dθ, (10)



Pressure effects on the equilibrium configurations of bilayer lipid membranes 13183

and, hence, it follows that

F̂ = 2π

∫ h

0

∫ b

0

[
B

2

(
∂û

∂z

)2

− K1

r

∂2û

∂r2

∂û

∂r
+

K1

2

(
∂2û

∂r2

)2

+
K1

2r2

(
∂û

∂r

)2
]
r dr dz

+ 2π

∫ b

0
P ûr dr. (11)

The boundary conditions (5)–(7) assume the form

u(b, z) = 0 0 � z � h, (12)

∂u

∂z
(r, 0) = 0 0 � r � b, (13)

∂u

∂z
(r, h) = −P(r)

B
0 � r � b. (14)

The final solution we derive, given by equation (61), can be verified to have a finite energy
density at r = 0.

Let us consider the variation δF̂ of the functional F̂ by assuming that the volume region R
does not change and that û∗(r, z) = û(r, z)+εψ(r, z)+ · · ·, where ψ = ψ(r, z) is a continuous
differentiable function and the dots denote terms of order higher than 1 relative to ε (Gelfand
and Fomin 2000). The variation δF̂ of functional (11) is the principal linear part in ε of the
difference

F̂[û∗] − F̂[û]. (15)

It needs to be noted that

F̂[û∗] − F̂[û] = 2πε

{∫ h

0

∫ b

0
K1

[
∂ψ

∂r

(
1

r

∂û

∂r
− ∂2û

∂r2

)
+

∂2ψ

∂r2

(
r
∂2û

∂r2
− ∂û

∂r

)]

+ Br
∂û

∂z

∂ψ

∂z
dr dz +

∫ b

0
Prψ dr dz

}
+ · · · . (16)

Since

∂û

∂z

∂ψ

∂z
= ∂

∂z

(
∂û

∂z
ψ

)
− ∂2û

∂z2
ψ, (17)

∂ψ

∂r

(
1

r

∂û

∂r
− ∂2û

∂r2

)
= ∂

∂r

[(
1

r

∂û

∂r
− ∂2û

∂r2

)
ψ

]
− ψ

(
− 1

r2

∂û

∂r
+

1

r

∂2û

∂r2
− ∂3û

∂r3

)
, (18)

and, for Green–Riemann’s theorem,∫ h

0

∫ b

0

∂2ψ

∂r2

(
r
∂2û

∂r2
− ∂û

∂r

)
dr dz =

∫ h

0

∫ b

0
ψ

∂2

∂r2

(
r
∂2û

∂r2
− ∂û

∂r

)
dr dz

+
∮

∂ψ
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(
r
∂2û

∂r2
− ∂û

∂r

)
− ψ

∂

∂r

(
r
∂2û

∂r2
− ∂û

∂r

)
dz, (19)

the variation δF̂ can be expressed as

δF̂ = 2πε

{ ∫ h

0

∫ b

0
Br

∂

∂z

(
∂û

∂z
ψ

)
+ K1

∂

∂r

[(
1

r

∂û
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− ∂2û

∂r2

)
ψ

]

+ ψ

[
K1

(
∂4û

∂r4
+

2

r

∂3û

∂r3
− 1
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∂r2
+

1
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∂û

∂r

)
− B

∂2û

∂z2

]
r dr dz

+ K1

∮ [
∂ψ

∂r

(
r
∂2û

∂r2
− ∂û

∂r

)
− ψr

∂3û

∂r3

]
dz

}
+

∫ b

0
Prψ dr. (20)



13184 R De Vita et al

Due to the arbitrariness of ψ(r, z), δF̂ = 0 implies that the following fourth-order linear
partial differential equation needs to be satisfied,

∂4û

∂r4
+

2

r

∂3û

∂r3
− 1

r2

∂2û

∂r2
+

1

r3

∂û

∂r
= B

K1

∂2û

∂z2
, (21)

for 0 � z � h and 0 � r � b.
By noting that∫ b

0

∫ h

0
Br

∂

∂z

(
∂û

∂z
ψ

)
dz dr +

∫ b

0
Prψ dr

=
∫ b

0

[(
B

∂û

∂z
+ P

)
ψ(r, h) − B

∂û

∂z
(r, 0)ψ(r, 0)

]
r dr, (22)

and that ψ(r, h) and ψ(r, 0) are arbitrary, the following boundary conditions are derived:

∂û

∂z
(r, 0) = 0, 0 � r � b, (23)

∂û

∂z
(r, h) = −P

B
, 0 � r � b. (24)

Moreover, since ψ(0, z) = ψ(b, z) = 0, it follows that∫ b

0

∂

∂r

[ (
1

r

∂û

∂r
− ∂2û

∂r2

)
ψ

]
dr = 0. (25)

In addition,∮
∂ψ

∂r

(
r
∂2û

∂r2
− ∂û

∂r

)
dz

=
∫ h

0

∂ψ

∂r
(b, z)

(
b
∂2û

∂r2
(b, z) − ∂û

∂r
(b, z)

)
+

∂ψ

∂r
(0, z)

(
∂û

∂r
(0, z)

)
dz, (26)

and because ∂ψ

∂r
(h, z) and ∂ψ

∂r
(0, z) are arbitrary, it follows that

b
∂2û

∂r2
(b, z) − ∂û

∂r
(b, z) = 0, 0 � z � h, (27)

which is the boundary condition for simply supported plates, and

∂û

∂r
(0, z) = 0, 0 � z � h, (28)

which is a necessary condition for the layer vertical displacement to have a maximum at the
center of the BLM. Finally, due to the fact that ψ(b, z) = 0 for 0 � z � h,∮

rψ
∂3û

∂r3
dz =

∫ h

0
bψ(b, z)

∂3û

∂r3
(b, z) dz = 0. (29)

It is worth noting that the last term in (2) does not contribute to the derivation of the
equilibrium equation (21). For these reasons, it does not appear in the energy density adopted
by other investigators (Huang 1986, Nielsen et al 1998). In the present study, this term is
included into the energy density to derive the boundary conditions by following a method used
by Timoshenko and Woinowsky-Krieger (1959, p 88–89).
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2.2. Series solution of boundary value problem

Consider the partial differential equation

∂4û

∂r4
+

2

r

∂3û

∂r3
− 1

r2

∂2û

∂r2
+

1

r3

∂û

∂r
= B

K1

∂2û

∂z2
, (30)

where 0 � z � h and 0 � r � b and the boundary conditions

û(b, z) = 0, 0 � z � h, (31)

b
∂2û

∂r2
(b, z) − ∂û

∂r
(b, z) = 0, 0 � z � h, (32)

∂û

∂z
(r, 0) = 0, 0 � r � b, (33)

∂û

∂z
(r, h) = −P(r)

B
, 0 � r � b. (34)

It is assumed that the solution of (30)–(34) exists as a product of a function of r alone and a
function of z alone:

û(r, z) = R(r)Z(z), (35)

and, hence,

1

R

(
d4R

dr4
+

2

r

d3R

dr3
− 1

r2

d2R

dr2
+

1

r3

dR

dr

)
= B

K1

1

Z

d2Z

dz2
= χ4, (36)

where χ is the separation constant. Thus, the determination of the solutions of the partial
differential equation is reduced to the determination of the solution of two ordinary differential
equations,

d4R

dr4
+

2

r

d3R

dr3
− 1

r2

d2R

dr2
+

1

r3

dR

dr
− χ4R = 0, 0 � r � b (37)

d2Z

dz2
− χ4 K1

B
Z = 0, 0 � z � h. (38)

The general solution of (37) is

R(r) = c1J0(χr) + c2Y0(χr) + c3I0(χr) + c4K0(χr), (39)

where c1, c2, c3, and c4 are constants, J0(χr) and Y0(χr) are the Bessel functions of the first
and second kinds of order zero, respectively, and I0(χr) and K0(χr) are the modified Bessel
functions of the first and second kinds of order zero, respectively. Since the solution needs to
be bounded at the center of the BLM, i.e. at r → 0, c2 = c4 = 0. The boundary condition
(31) requires that R(b) = 0 and, hence,

c1 = −c3
I0(χb)

J0(χb)
, (40)

so that

R(r) = c3

(
I0(χr) − I0(χb)

J0(χb)
J0(χr)

)
. (41)

It follows that boundary condition (32) is given by

c3χ
2b

(
I2(χb) − I0(χb)J2(χb)

J0(χb)

)
= 0. (42)
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The possibility that c3 = 0 leads to the trivial solution. Thus, in order to find non-trivial
solutions of (42), χ is chosen to be a solution of the following equation:

J0(χb)I2(χb) − I0(χb)J2(χb) = 0. (43)

By writing x = χb, (43) assumes the form

J0(x)I2(x) − I0(x)J2(x) = 0. (44)

Let x1 < x2 < · · · < xn be positive roots of (44). Then, the admissible values of the parameter
χ are χn = xn

b
.

Next, the general solution of (38) is

Z(z) = d1

2
e−χ2

√
K1
B

z +
d2

2
eχ2

√
K1
B

z
, (45)

where d1 and d2 are constants. From the boundary condition (33), it follows that d1 = d2.
Hence,

Z(z) = d1

2

(
e−χ2

√
K1
B

z + eχ2
√

K1
B

z

)
= d1 cosh

(
χ2

√
K1

B
z

)
. (46)

For convenience, define

Bn(r) = J0(xn)I0

(
xn

r

b

)
− I0(xn)J0

(
xn

r

b

)
. (47)

The set of particular solutions of (30) is

ûn = dnBn(r) cosh

(√
K1

B

(
xn

b

)2

z

)
, n = 1, 2, . . . . (48)

By the superposition of these solutions, one obtains the solution

û =
∞∑

n=1

dnBn(r) cosh

(√
K1

B

(
xn

b

)2

z

)
. (49)

Suppose that P = P(r) can be expanded as follows:

P(r) =
∞∑

n=1

cnBn(r). (50)

Furthermore, assume that |P(r)| � P for 0 � r � b. Multiplying both sides of (50) by
rBm(r) and integrating term by term from 0 to b, one obtains∫ b

0
rP (r)Bm(r) dr =

∞∑
n=1

cn

∫ b

0
rBn(r)Bm(r) dr. (51)

It can be proved (see appendix F) that the sequence of functions

{Bn(r)} n = 1, 2, . . . (52)

has the property that∫ b

0
rBn(r)Bm(r) dr =




0 m �= n,

b2

2

(
I 2

0 (xn)J
2
1 (xn) − J 2

0 (xn)I
2
1 (xn)

)
m = n.

(53)

Thus, the set of functions Bn(r) for n = 1, 2, . . . is orthogonal with weight r on the interval
[0, b]. Therefore, the values of the coefficients cn in (50) are

cn =
∫ b

0 P(r)Bn(r)r dr

b2

2

(
I 2

0 (xn)J
2
1 (xn) − J 2

0 (xn)I
2
1 (xn)

) . (54)
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Then, by substituting (49) and (50)–(54) into the boundary condition (34), one obtains
∞∑

n=1

dn

√
K1

B

(
xn

b

)2

sinh

(√
K1

B

(
xn

b

)2

h

)
Bn(r) = − 1

B

∞∑
n=1

cnBn(r). (55)

Consequently, the values of the coefficients dn in (49) are

dn = − b2cn√
BK1x2

n sinh
(√

K1

B

(
xn

b

)2
h
) , (56)

where the coefficients cn are given by (54).

2.3. Convergence of series solution

Firstly, note that the change of variable ζ = r/b yields∫ b

0
rP (r)Bn(r) dr = b2

∫ 1

0
ζP (ζb)Bn(ζb) dζ. (57)

Then, by setting

An(z) =
cosh

(√
K1

B

(
xn

b

)2
z
)

x2
n sinh

(√
K1

B

(
xn

b

)2
h
) , (58)

Cn =
∫ 1

0
P(ζb)Bn(ζb)ζ dζ, (59)

Dn = I 2
0 (xn)J

2
1 (xn) − J 2

0 (xn)I
2
1 (xn), (60)

the series solution expressed by (49), (54) and (56) can be re-written in a final form suitable
for computations as

û(r, z) = 2b2√
BK1

∞∑
n=1

Cn

Dn

An(z)Bn(r). (61)

It can be seen that

|An(z)| � 1

x2
n

coth

(√
K1

B

(
xn

b

)2

h

)
� M

x2
n

, (62)

where M = coth
(√

K1

B

(
x1
b

)2
h
)

.

For large roots xn of (44), it is shown in appendices A, E and C, respectively, that

|Bn(r)| � 2exn

√
πxn

, |Cn| � 2P exn

πxn

, Dn ≈ e2xn

π2x2
n

(
1 + O

(
1

xn

))
. (63)

Then, by means of (62)–(63),

|ûn(r, z)| � 4MP e2xn

π3/2x
7/2
n

1

Dn

≈ 4MP
√

π

x
3/2
n

. (64)

In appendix B, the large roots xn of (44) are proved to be given approximately by

xn ≈ π

(
n − 1

4

)
. (65)
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Figure 2. The deflection of a BLM under constant pressure at z = h. The deflection û(r, h) has
been obtained via the solution (61) for values of the parameters reported in table 1.

Figure 3. Solution (61) at z = h for K1 = 10−6 (circles), K1 = 1.5 × 10−6 (squares), K1 =
2.5 × 10−6 (crosses), and K1 = 5 × 10−6 (diamonds). The values of h, b, B, P are reported in
table 1.

Therefore, the inequality (64) with the large roots xn defined by (65) implies that the series
solution (61) is absolutely convergent for 0 � r � b, 0 � z � h.

In figure 2, the surface and the contour plots of the series solution are presented. The series
solution (61) has been computed for the values of the material parameters that are reported in
table 1. In figures 3 and 4, the solution (61) has been plotted for different values of B and K1,
respectively. In these plots, the other parameters, which also appear in the solution, are fixed
to the values reported in table 1. In order to present the results, the pressure P = P(r) has
been chosen to be constant. The roots xn of equation (44) have been computed numerically
by implementing Newton’s method for small values of n. The numerical process of finding
the roots of (44) is then simplified for large values of n. These roots can be approximated by
π

(
n − 1

4

)
.

3. Discussion

A novel mathematical model that describes the pressure effects on the equilibrium
configurations of a circular BLM has been presented. The BLM has been assumed to behave
as a smectic A liquid crystal. It is subjected to small deformation under pressure loads that
are applied perpendicular to the smectic layers. The edges of the biological membrane are
assumed to be simply supported. The governing equilibrium equation and boundary conditions
are derived by means of variational methods. A series solution of the boundary value problems
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Figure 4. Solution (61) at z = h for B = 10−12 (diamonds), B = 1.5 × 10−12 (circles),
B = 3 × 10−12 (crosses), and B = 5 × 10−8 (squares). The values of h, b,K1, P are reported in
table 1.

Table 1. Values of parameters.

Parameter Value Unit Reference

K1 for SOPC 10−6 dyne (Evans and Rawicz 1990)
B for SOPC 5 × 10−8 dyne Å−2 (Hladky and Gruen 1982)
h 50 Å (Fettiplace et al 1971)
b 1000 Å
P 10−12 dyne Å−2

has been obtained by employing cylindrical functions. The solution has been proved to be
absolutely convergent.

The deflection of the BLM has been numerically computed for values of the parameters
that are reported in table 1. As shown in figure 2, the BLM has maximum deflection at its
center. It bulges up close to its boundary in the opposite direction of the applied pressure.
In figures 3 and 4, it can be observed that the distortion of the BLM decreases as B and K1

decrease. However, the behavior of the solution close to the boundary does not change and,
hence, is not determined by the compression and splay-elasticity of the BLM. This behavior
is a consequence of the strong anchoring assumption and is an artifact of the model. A
replacement of this rather restrictive strong anchoring condition by a more realistic form of
weak anchoring is currently being explored by the authors

This theoretical study is motivated by the authors’ need of interpreting and synthesize
the results of experiments that are currently being conducted at CIMSS (Center for Intelligent
Material Systems and Structures), Virginia Tech, to characterize the mechanics of BLMs.
Synthetic BLMs of 1-stearoyl-2-oleoyl-3-sn-phosphatidylcholine (SOPC) are reconstituted
over hydrophilic polycarbonate membrane with micron or sub-micron pore size. Pressure is
applied perpendicular to the BLMs after impedance measurements indicate their formation.
The nanometer deformation of the BLM cannot be measured as a function of the applied
pressure in this experimental setup. Thus, the findings of this study will be useful in
establishing the small deformation that corresponds to a given thickness h of the BLM,
applied pressure P and pore radius b of the hydrophilic film.

The values of the saddle splay constant K1 and compressive constant B for BLM of SOPC
used in the numerical simulation have been taken from different sources (Hladky and Gruen
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1982, Evans and Rawicz 1990). It must be pointed out that to get accurate prediction of
the deformation of BLM, tests to determine these constants should have been carried out by
using the same experimental settings under the same environmental conditions. Despite these
limitations, the results offer some insight on the mechanical response of pressurized BLMs
with circular geometry and simply supported edges.

The pressure P = P(r) that acts normal to the lipid layers in the proposed model
can be any bounded function of r that admits the representation (50). Therefore, although the
numerical simulation and illustrative plots are obtained only for BLMs under uniform pressure
loads, the small deformations of the BLMs under different pressure loads such as partial loads
and point loads acting on the center of the BLM can be also described by the model.

BLMs are used as platforms to engineer a wide variety of sensors and actuators. Because
protein transporters and channels are usually included in these platforms, investigating their
influence on the mechanical performance of BLM is crucial for creating viable sensors and
actuators. Several investigators have analyzed the effect of lipid bilayers deformation on
protein function by accounting for their smectic-A liquid crystalline structure (Huang 1986,
Helfrich and Jakobsson 1990, Nielsen et al 1998). They have derived mathematical models
by using a free energy density that also contains a surface tension contribution. In this study,
the BLM surface tension has been assumed to be zero based on arguments presented by Jähnig
(1996). Briefly, the attractive interactions between the hydrocarbon tails and the repulsive
interactions between the head groups balance each other thus producing an optimal packing
of the lipid molecules. The free energy is minimal with respect to the surface area and, hence,
the surface tension is zero.

The equilibrium configurations of lipid bilayers have been studied numerically and
analytically by using the well-known Helfrich’s spontaneous curvature model (Helfrich 1973).
Unlike the model introduced herein, the earlier model by Helfrich does not include a layer
compression term. The retention of a finite compression is expected to be more realistic and
constitutes one of the defining features of the present study.

For the small distortions considered herein, the molecular axes can be postulated to be
normal to the layers. Thus, the director n and the unit layer normal are assumed to coincide.
Future studies will be conducted to describe the deformations of BLMs by accounting for
the decoupling of its director n and the layer unit normal via the recent nonlinear theory of
Stewart (2007).
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Appendix A

Note that |J0(x)| � 1 and I0(x) is monotonically increasing for all x. Thus, one has

|Bn(r)| =
∣∣∣∣J0(xn)I0

(
xn

r

b

)
− I0 (xn) J0

(
xn

r

b

)∣∣∣∣
� |J0(xn)|

∣∣∣∣I0

(
xn

r

b

)∣∣∣∣ + |I0 (xn)|
∣∣∣∣J0

(
xn

r

b

)∣∣∣∣
� 2I0(xn) for 0 � r � b. (A.1)
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For large x, the following asymptotic formula holds, (Rade and Westergren 1999)

Ik (x) ≈ ex

√
2πx

[
1 + O

(
1

x

)]
for k = 0, 1, 2, . . . , (A.2)

and, consequently, for large xn,

I0(x) � exn

√
πxn

. (A.3)

Finally, by using (A.3) in (A.1), one finds that

|Bn(r)| � 2exn

√
πxn

for 0 � r � b. (A.4)

Appendix B

For large x, the asymptotic expressions

Jk(x) ≈
√

2

πx

[
cos

(
x − π

4
− kπ

2

)
+ O

(
1

x

)]
k = 0, 1, 2, . . . , (B.1)

are well-known (Rade and Westergren 1999). By using (A.2) and (B.1), it can be easily
verified that for large x

J0(x)I2(x) − I0(x)J2(x) ≈ ex

πx

[
cos

(
x − π

4

)
− cos

(
x − π

4
− π

)
+ O

(
1

x

)]

= ex

πx

[
2 cos

(
x − π

4

)
+ O

(
1

x

)]

= 2ex

πx

[
sin

(
x +

π

4

)
+ O

(
1

x

)]
. (B.2)

Thus, the large roots xn of (44) can be approximated by

xn +
π

4
≈ nπ (B.3)

or, equivalently,

xn ≈ π

(
n − 1

4

)
for large n. (B.4)

Appendix C

From the asymptotic formulas (A.2) and (B.1), it follows that

I 2
m(xn) ≈ e2xn

2πxn

[
1 + O

(
1

xn

)]
for m = 0, 1, (C.1)

J 2
0 (xn) ≈ 2

πxn

cos2

(
xn − π

4

)
+ O

(
1

x2
n

)
, (C.2)

J 2
1 (xn) ≈ 2

πxn

cos2

(
xn − π

4
− π

2

)
+ O

(
1

x2
n

)
, (C.3)
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and, consequently,

Dn ≈ e2xn

π2x2
n

[
cos2

(
xn − π

4
− π

2

)
− cos2

(
xn − π

4

)
+ O

(
1

xn

)]

= e2xn

π2x2
n

[
sin2

(
xn − π

4

)
− cos2

(
xn − π

4

)
+ O

(
1

xn

)]

= −e2xn

π2x2
n

[
cos

(
2xn − π

2

)
+ O

(
1

xn

)]

= −e2xn

π2x2
n

[
sin (2xn) + O

(
1

xn

)]
. (C.4)

Moreover, by means of (B.4), one has that for large xn

sin(2xn) ≈ sin

[
2π

(
n − 1

4

)]
= −1. (C.5)

Hence,

Dn ≈ e2xn

π2x2
n

[
1 + O

(
1

xn

)]
for large xn. (C.6)

Appendix D

Note that the change of variable η = xnζ in the following integral leads to∫ 1

0
|ζP (bζ )J0(xnζ )| dζ = 1

xn
2

∫ xn

0

∣∣∣∣ηP

(
b

η

xn

)
J0(η)

∣∣∣∣ dη. (D.1)

By Schwartz’s inequality and recalling that |P(r)| � P for 0 � r � b, one obtains that∫ xn

0

∣∣∣∣ηP

(
b

η

xn

)
J0(η)

∣∣∣∣ dη �
[∫ xn

0
ηP 2

(
b

η

xn

)
dη

] 1
2
[∫ xn

0
ηJ 2

0 (η) dη

] 1
2

� P

[∫ xn

0
η dη

] 1
2
[∫ xn

0
ηJ 2

0 (η) dη

] 1
2

= Pxn√
2

[∫ xn

0
ηJ 2

0 (η) dη

] 1
2

. (D.2)

Next, note that (Watson 1995)∫
xJ 2

k (αx) dx = x2

2

[
J 2

k (αx) − Jk−1(αx)Jk+1(αx)
]
, (D.3)

where k = 0, 1, 2, . . . and α is a nonzero real number. Hence, since J−k(x) = (−1)kJk(x) for
all x with k = 1, 2, 3, . . . , from (D.3) it readily follows that∫ xn

0
ηJ 2

0 (η) dη = xn
2

2

[
J 2

0 (xn) + J1(xn)J2(xn)
]
. (D.4)

Hence, for large xn,∣∣J 2
0 (xn) + J1(xn)J2(xn)

∣∣ � 2

πxn

[
cos2

(
xn − π

4

)

+

∣∣∣∣cos

(
xn − π

4
− π

2

)∣∣∣∣
∣∣∣∣cos

(
xn − π

4
− π

)∣∣∣∣
]

+ O

(
1

x2
n

)

� 4

πxn

+ O

(
1

x2
n

)
. (D.5)
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Then,

0 � xn
2

2

[
J 2

0 (xn) + J1(xn)J2(xn)
]

� 2xn

π
+ O(1), (D.6)

and, consequently,

{
x2

n

2

[
J 2

0 (xn) + J1(xn)J2(xn)
]} 1

2

�
√

2xn

π
+ O

(
1

xn
1/2

)
. (D.7)

By substituting (D.4) into (D.2) and using (D.7), one obtains that∫ xn

0

∣∣∣∣ηP

(
b

η

xn

)
J0(η)

∣∣∣∣ dη � Pxn√
2

(√
2xn

π
+ O

(
1

xn
1/2

))
. (D.8)

Then, by means of (D.8), (D.1) for large xn gives∫ 1

0
|ζP (bζ )J0(xnζ )| dζ � P√

πxn

+ O

(
1

xn
3/2

)
. (D.9)

Appendix E

Because I0(x) is monotonically increasing, |P(bζ )| � P for 0 � ζ � 1, and by using
(A.2)–(B.1), one finds that, for large xn,∣∣∣∣
∫ 1

0
ζP (bζ )J0(xn)I0(xnζ ) dζ

∣∣∣∣ � P |J0(xn)||I0(xn)|
∫ 1

0
ζ dζ = P

2
|J0(xn)|I0(xn)

≈ P exn

2πxn

[
1 + O

(
1

xn

)] ∣∣∣∣cos

(
xn − π

4

)
+ O

(
1

xn

)∣∣∣∣
� P exn

2πxn

[
1 + O

(
1

xn

)]
. (E.1)

By employing inequalities (A.3) and (D.9),∣∣∣∣
∫ 1

0
ζP (bζ )I0(xn)J0(xnζ ) dζ

∣∣∣∣ = I0(xn)

∣∣∣∣
∫ 1

0
ζP (bζ )J0(xnζ ) dζ

∣∣∣∣
� I0(xn)

∫ 1

0
|ζP (bζ )J0(xnζ )| dζ

� P exn

πxn

[
1 + O

(
1

xn

)]
. (E.2)

Hence, for large xn

|Cn| � P exn

2πxn

[
1 + 2 + O

(
1

xn

)]
= 3

2

P exn

πxn

[
1 + O

(
1

xn

)]
. (E.3)

Finally, one obtains that

|Cn| � 2P exn

πxn

for large xn. (E.4)
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Appendix F

The change of variable r = bζ in the following integral yields∫ b

0
rBn(r)Bm(r) dr = b2

∫ 1

0
ζBn(bζ )Bm(bζ ) dζ, (F.1)

with m �= n. Note that (Watson 1995)

∫ 1

0
ζJ0(xnζ )J0(xmζ ) dζ = xmJ0(xn)J1(xm) − xnJ0(xm)J1(xn)

x2
m − x2

n

, (F.2)

∫ 1

0
ζ I0(xnζ )I0(xmζ ) dζ = xmI0(xn)I1(xm) − xnI0(xm)I1(xn)

x2
m − x2

n

, (F.3)

∫ 1

0
ζ I0(xnζ )J0(xmζ ) dζ = xmJ1(xm)I0(xn) + xnJ0(xm)I1(xn)

x2
m + x2

n

. (F.4)

After some simple calculations, it readily follows from (F.2)–(F.4) that∫ 1

0
ζBn(bζ )Bm(bζ ) dζ = xmI0(xn)J0(xn)[I0(xm)J1(xm) + J0(xm)I1(xm)]

x2
m − x2

n

− xnI0(xm)J0(xm)[I0(xn)J1(xn) + J0(xn)I1(xn)]

x2
m − x2

n

− xmI0(xn)J0(xn)[I0(xm)J1(xm) + J0(xm)I1(xm)]

x2
m + x2

n

− xnI0(xm)J0(xm)[I0(xn)J1(xn) + J0(xn)I1(xn)]

x2
m + x2

n

. (F.5)

Next, note that (44) can be re-written as

xI0(x)J0(x) = I1(x)J0(x) + I0(x)J1(x), (F.6)

by using the identities

Ik+1(x) = Ik−1(x) − 2k

x
Ik(x), Jk+1(x) = 2k

x
Jk(x) − Jk−1(x). (F.7)

Thus, the roots xm and xn of (44) satisfy the following equations:

xmI0(xm)J0(xm) = I0(xm)J1(xm) + I1(xm)J0(xm), (F.8)

xnI0(xn)J0(xn) = I0(xn)J1(xn) + I1(xn)J0(xn). (F.9)

By substituting the left hand-sides of (F.8)–(F.9) into (F.5), one finds that∫ 1

0
ζBn(bζ )Bm(bζ ) dζ = I0(xm)I0(xn)J0(xn)J0(xm) − I0(xm)I0(xn)J0(xn)J0(xm) = 0

(F.10)

and, consequently,∫ b

0
rBn(r)Bm(r) dr = 0 for m �= n. (F.11)

Therefore, the system {Bn(r)} with n = 1, 2, . . . is orthogonal with weight r where 0 � r � b.
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Again, consider the change of variable r = bζ in the following integral∫ b

0
B2

n(r)r dr = b2
∫ 1

0
B2

n(bζ )ζ dζ. (F.12)

Next, from (D.3) and J ′
0(x) = −J1(x),∫ 1

0
ζJ 2

0 (xnζ ) dζ = 1

2

[
J 2

1 (xn) + J 2
0 (xn)

]
. (F.13)

Since Ik(x) = i−kJk(ix) with k = 1, 2, . . . , it immediately follows from (F.13) that∫ 1

0
ζ I 2

0 (xnζ ) dζ = 1

2

[
I 2

0 (xn) − I 2
1 (xn)

]
. (F.14)

Moreover, by setting m = n into (F.4), one derives∫ 1

0
ζ I0(xnζ )J0(xnζ ) dζ = 1

2xn

[I0(xn)J1(xn) + J0(xn)I1(xn)]. (F.15)

Since xn satisfies (F.6), (F.15) simplifies to∫ 1

0
I0(xnζ )J0(xnζ )ζ dζ = 1

2
[I0(xn)J0(xn)]. (F.16)

From (F.13), (F.14), (F.16), it follows that∫ b

0
B2

n(r)r dr = b2

2

[
I 2

0 (xn)J
2
1 (xn) − I 2

1 (xn)J
2
0 (xn)

]
. (F.17)
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